[ create a new paste ] login | about

Project: programmingpraxis
Link: http://programmingpraxis.codepad.org/uldAymGe    [ raw code | fork ]

programmingpraxis - Scheme, pasted on Apr 26:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
; integer factorization

(define (expm b e m)
  (define (m* x y) (modulo (* x y) m))
  (cond ((zero? e) 1)
        ((even? e) (expm (m* b b) (/ e 2) m))
        (else (m* b (expm (m* b b) (/ (- e 1) 2) m)))))

(define (isqrt n)
  (let loop ((x n) (y (quotient (+ n 1) 2)))
    (if (<= 0 (- y x) 1) x
      (loop y (quotient (+ y (quotient n y)) 2)))))

(define (ilog b n)
  (if (zero? n) -1
    (+ (ilog b (quotient n b)) 1)))

(define (digits n . args)
  (let ((b (if (null? args) 10 (car args))))
    (let loop ((n n) (d '()))
      (if (zero? n) d
          (loop (quotient n b)
                (cons (modulo n b) d))))))

(define rand
  (let* ((a 3141592653) (c 2718281829)
         (m (expt 2 35)) (x 5772156649)
         (next (lambda ()
                 (let ((x-prime (modulo (+ (* a x) c) m)))
                   (set! x x-prime) x-prime)))
         (k 103)
         (v (list->vector (reverse
              (let loop ((i k) (vs (list x)))
                (if (= i 1) vs
                  (loop (- i 1) (cons (next) vs)))))))
         (y (next))
         (init (lambda (s)
                 (set! x s) (vector-set! v 0 x)
                 (do ((i 1 (+ i 1))) ((= i k))
                   (vector-set! v i (next))))))
    (lambda seed
      (cond ((null? seed)
              (let* ((j (quotient (* k y) m))
                     (q (vector-ref v j)))
                (set! y q)
                (vector-set! v j (next)) (/ y m)))
            ((eq? (car seed) 'get) (list a c m x y k v))
            ((eq? (car seed) 'set)
              (let ((state (cadr seed)))
                (set! a (list-ref state 0))
                (set! c (list-ref state 1))
                (set! m (list-ref state 2))
                (set! x (list-ref state 3))
                (set! y (list-ref state 4))
                (set! k (list-ref state 5))
                (set! v (list-ref state 6))))
            (else (init (modulo (numerator
                    (inexact->exact (car seed))) m))
                  (rand))))))

(define (randint . args)
  (cond ((null? (cdr args))
          (floor (* (rand) (car args))))
        ((< (car args) (cadr args))
          (+ (floor (* (rand) (- (cadr args) (car args)))) (car args)))
        (else (+ (ceiling (* (rand) (- (cadr args) (car args)))) (car args)))))

(define (primes n)
  (let* ((max-index (quotient (- n 3) 2))
         (v (make-vector (+ 1 max-index) #t)))
    (let loop ((i 0) (ps '(2)))
      (let ((p (+ i i 3)) (startj (+ (* 2 i i) (* 6 i) 3)))
        (cond ((>= (* p p) n)
               (let loop ((j i) (ps ps))
                  (cond ((> j max-index) (reverse ps))
                        ((vector-ref v j)
                          (loop (+ j 1) (cons (+ j j 3) ps)))
                        (else (loop (+ j 1) ps)))))
              ((vector-ref v i)
                (let loop ((j startj))
                  (if (<= j max-index)
                      (begin (vector-set! v j #f)
                             (loop (+ j p)))))
                      (loop (+ 1 i) (cons p ps)))
              (else (loop (+ 1 i) ps)))))))

(define (primes-range l r b)
  (let* ((ps (cdr (primes (+ (isqrt r) 1))))
         (qs (map (lambda (p) (modulo (* -1/2 (+ l 1 p)) p)) ps))
         (zs '()) (z (lambda (p) (set! zs (cons p zs)))))
    (do ((t l (+ t b b))
         (qs qs (map (lambda (p q) (modulo (- q b) p)) ps qs)))
        ((= t r) (reverse zs))
      (let ((bs (make-vector b #t)))
        (do ((qs qs (cdr qs)) (ps ps (cdr ps))) ((null? qs))
          (do ((j (car qs) (+ j (car ps)))) ((<= b j))
            (vector-set! bs j #f)))
        (do ((j 0 (+ j 1))) ((= j b))
          (if (vector-ref bs j) (z (+ t j j 1))))))))

(define (save-billion-primes file-name)
  (with-output-to-file file-name (lambda ()
    (do ((i 0 (+ i 1))) ((= i 10))
      (let loop ((ps (if (zero? i) (primes 100000020)
                       (primes-range (* i 100000020)
                         (* (+ i 1) 100000020) 10000002)))
                 (k (quotient (* i 100000020) 30)) (bits 0))
        (cond ((null? ps)
                (display (integer->char bits))
                (do ((k (+ k 1) (+ k 1)))
                    ((= k (quotient (* (+ i 1) 100000020) 30)))
                  (display (integer->char 0))))
              ((< k (quotient (car ps) 30))
                (display (integer->char bits))
                (do ((k (+ k 1) (+ k 1)))
                    ((= k (quotient (car ps) 30)))
                  (display (integer->char 0)))
                (loop ps (quotient (car ps) 30) 0))
              (else (case (modulo (car ps) 30)
                      ((1)  (loop (cdr ps) k (+ bits 1)))
                      ((7)  (loop (cdr ps) k (+ bits 2)))
                      ((11) (loop (cdr ps) k (+ bits 4)))
                      ((13) (loop (cdr ps) k (+ bits 8)))
                      ((17) (loop (cdr ps) k (+ bits 16)))
                      ((19) (loop (cdr ps) k (+ bits 32)))
                      ((23) (loop (cdr ps) k (+ bits 64)))
                      ((29) (loop (cdr ps) k (+ bits 128)))
                      (else (loop (cdr ps) k bits))))))))))>

; (save-billion-primes "prime.bits") ; only do this once

(define prime-bits #f)

(define (load-primes n file-name)
  (with-input-from-file file-name
    (lambda ()
      (let ((k-max (+ (quotient n 30) (if (zero? (modulo n 30)) 0 1))))
        (set! prime-bits (make-vector k-max))
        (do ((k 0 (+ k 1))) ((= k k-max))
          (vector-set! prime-bits k (char->integer (read-char))))))))

(define max-prime 1000000181)
(load-primes 1000000200 "prime.bits")

(define (next-prime n)
  (define (next-bit n)
    (let ((index (quotient n 30))
          (offset (modulo n 30)))
      (case offset
        ((0)                 (values index 1))
        ((1 2 3 4 5 6)       (values index 2))
        ((7 8 9 10)          (values index 4))
        ((11 12)             (values index 8))
        ((13 14 15 16)       (values index 16))
        ((17 18)             (values index 32))
        ((19 20 21 22)       (values index 64))
        ((23 24 25 26 27 28) (values index 128))
        ((29)                (values (+ index 1) 1)))))
  (define (bit-value offset)
    (case offset
      ((1)   1) ((2)   7) ((4)  11) ((8)   13)
      ((16) 17) ((32) 19) ((64) 23) ((128) 29)))
  (define (last-pair xs)
    (if (null? (cdr xs)) xs
      (last-pair (cdr xs))))
  (define (cycle . xs)
    (set-cdr! (last-pair xs) xs) xs)
  (define (get-wheel n)
    (let ((base (* (quotient n 30) 30))
          (offset (modulo n 30)))
      (case offset
        ((0)                 (values (+ base  1) (cycle 6 4 2 4 2 4 6 2)))
        ((1 2 3 4 5 6)       (values (+ base  7) (cycle 4 2 4 2 4 6 2 6)))
        ((7 8 9 10)          (values (+ base 11) (cycle 2 4 2 4 6 2 6 4)))
        ((11 12)             (values (+ base 13) (cycle 4 2 4 6 2 6 4 2)))
        ((13 14 15 16)       (values (+ base 17) (cycle 2 4 6 2 6 4 2 4)))
        ((17 18)             (values (+ base 19) (cycle 4 6 2 6 4 2 4 2)))
        ((19 20 21 22)       (values (+ base 23) (cycle 6 2 6 4 2 4 2 4)))
        ((23 24 25 26 27 28) (values (+ base 29) (cycle 2 6 4 2 4 2 4 6)))
        ((29)                (values (+ base 31) (cycle 6 4 2 4 2 4 6 2))))))
  (cond ((< n 2) 2) ((< n 3) 3) ((< n 5) 5)
        ((< n max-prime)
          (let-values (((index offset) (next-bit n)))
            (let loop ((index index) (offset offset))
              (cond ((= offset 256) (loop (+ index 1) 1))
                    ((zero? (logand (vector-ref prime-bits index) offset))
                      (loop index (* offset 2)))
                    (else (+ (* index 30) (bit-value offset)))))))
        (else (let-values (((k wheel) (get-wheel n)))
                (let loop ((k k) (wheel wheel))
                  (if (prime? k) k (loop (+ k (car wheel)) (cdr wheel))))))))

(define (prime? n)
  (define (expm b e m)
    (define (m* x y) (modulo (* x y) m))
    (cond ((zero? e) 1)
          ((even? e) (expm (m* b b) (/ e 2) m))
          (else (m* b (expm (m* b b) (/ (- e 1) 2) m)))))
  (define (digits n . args)
    (let ((b (if (null? args) 10 (car args))))
      (let loop ((n n) (d '()))
        (if (zero? n) d
            (loop (quotient n b)
                  (cons (modulo n b) d))))))
  (define (isqrt n)
    (let loop ((x n) (y (quotient (+ n 1) 2)))
      (if (<= 0 (- y x) 1) x
        (loop y (quotient (+ y (quotient n y)) 2)))))
  (define (square? n)
    (let ((n2 (isqrt n)))
      (= n (* n2 n2))))
  (define (jacobi a n)
    (if (not (and (integer? a) (integer? n) (positive? n) (odd? n)))
        (error 'jacobi "modulus must be positive odd integer")
        (let jacobi ((a a) (n n))
          (cond ((= a 0) 0)
                ((= a 1) 1)
                ((= a 2) (case (modulo n 8) ((1 7) 1) ((3 5) -1)))
                ((even? a) (* (jacobi 2 n) (jacobi (quotient a 2) n)))
                ((< n a) (jacobi (modulo a n) n))
                ((and (= (modulo a 4) 3) (= (modulo n 4) 3)) (- (jacobi n a)))
                (else (jacobi n a))))))
  (define legendre jacobi)
  (define (inverse x n)
    (let loop ((x (modulo x n)) (a 1))
      (cond ((zero? x) (error 'inverse "division by zero"))
            ((= x 1) a)
            (else (let ((q (- (quotient n x))))
                    (loop (+ n (* q x)) (modulo (* q a) n)))))))
  (define (miller? n a)
    (let loop ((r 0) (s (- n 1)))
      (if (even? s) (loop (+ r 1) (/ s 2))
        (if (= (expm a s n) 1) #t
          (let loop ((r r) (s s))
            (cond ((zero? r) #f)
                  ((= (expm a s n) (- n 1)) #t)
                  (else (loop (- r 1) (* s 2)))))))))
  (define (chain m f g x0 x1)
    (let loop ((ms (digits m 2)) (u x0) (v x1))
      (cond ((null? ms) (values u v))
            ((zero? (car ms)) (loop (cdr ms) (f u) (g u v)))
            (else (loop (cdr ms) (g u v) (f v))))))
  (define (lucas? n)
    (let loop ((a 11) (b 7))
      (let ((d (- (* a a) (* 4 b))))
        (cond ((square? d) (loop (+ a 2) (+ b 1)))
              ((not (= (gcd n (* 2 a b d)) 1))
                (loop (+ a 2) (+ b 2)))
              (else (let* ((x1 (modulo (- (* a a (inverse b n)) 2) n))
                           (m (quotient (- n (legendre d n)) 2))
                           (f (lambda (u) (modulo (- (* u u) 2) n)))
                           (g (lambda (u v) (modulo (- (* u v) x1) n))))
                      (let-values (((xm xm1) (chain m f g 2 x1)))
                        (zero? (modulo (- (* x1 xm) (* 2 xm1)) n)))))))))
  (cond ((or (not (integer? n)) (< n 2))
          (error 'prime? "must be integer greater than one"))
        ((even? n) (= n 2)) ((zero? (modulo n 3)) (= n 3))
        (else (and (miller? n 2) (miller? n 3) (lucas? n)))))

(define (td-factors n b)
  (let loop ((n n) (p 2) (fs '()))
    (cond ((< n (* p p)) (values (reverse (cons n fs)) 1))
          ((< b p) (values (reverse fs) n))
          ((zero? (modulo n p))
            (let ((new-n (/ n p)))
              (if (prime? new-n)
                  (values (reverse (cons new-n (cons p fs))) 1)
                  (loop (/ n p) p (cons p fs)))))
          (else (loop n (next-prime p) fs)))))

(define (rho-factor n c b)
  (define (f x) (modulo (+ (* x x) c) n))
  (let loop ((x 2) (y (f 2)) (q 1) (b b))
    (cond ((zero? b) #f)
          ((zero? (modulo b 100))
            (let ((new-x (f x)) (new-y (f (f y))))
              (let ((g (gcd q n))) (if (< 1 g n) g
                (loop new-x new-y (modulo (* (- new-y new-x) q) n) (- b 1))))))
          (else (let ((new-x (f x)) (new-y (f (f y))))
            (loop new-x new-y (modulo (* (- new-y new-x) q) n) (- b 1)))))))

(define (pminus1-factor n b)
  (let loop ((c 2) (p 2) (k 0))
    (cond ((< b p) (let ((g (gcd (- c 1) n))) (if (< 1 g n) g #f)))
          ((zero? (modulo k 100)) (let ((g (gcd (- c 1) n))) (if (< 1 g n) g
            (loop (expm c (expt p (ilog p b)) n) (next-prime p) (+ k 1)))))
          (else (loop (expm c (expt p (ilog p b)) n) (next-prime p) (+ k 1))))))

(define (add P1 P2 P1-P2 N)
  (define (square x) (* x x))
  (let* ((x0 (car P1-P2)) (x1 (car P1)) (x2 (car P2))
         (z0 (cdr P1-P2)) (z1 (cdr P1)) (z2 (cdr P2))
         (t1 (modulo (* (+ x1 z1) (- x2 z2)) n))
         (t2 (modulo (* (- x1 z1) (+ x2 z2)) n)))
    (cons (modulo (* (square (+ t2 t1)) z0) n)
          (modulo (* (square (- t2 t1)) x0) n))))

(define (double P An Ad N)
  (define (square x) (* x x))
  (let* ((x (car P)) (z (cdr P))
         (x+z2 (modulo (square (+ x z)) N))
         (x-z2 (modulo (square (- x z)) N))
         (t (- x+z2 x-z2)))
    (cons (modulo (* x+z2 x-z2 4 Ad) N)
          (modulo (* (+ (* t An) (* x-z2 Ad 4)) t) N))))

(define (multiply K P An Ad N)
  (cond ((zero? K) (cons 0 0)) ((= K 1) P) ((= K 2) (double P An Ad N))
    (else (let loop ((ks (cdr (digits K 2))) (Q (double P An Ad N)) (R P))
            (cond ((null? ks) R)
                  ((odd? (car ks))
                    (loop (cdr ks) (double Q An Ad N) (add Q R P N)))
                  (else (loop (cdr ks) (add R Q P N) (double R An Ad N))))))))

(define (curve12 N S)
  (let* ((u (modulo (- (* S S) 5) N))
         (v (modulo (* 4 S) N)) (v-u (- v u)))
    (values (modulo (* (* v-u v-u v-u) (+ u u u v)) N)
            (modulo (* 4 u u u v) N)
            (cons (modulo (* u u u) N)
                  (modulo (* v v v) N)))))

(define (ec-factor N B1 B2 S)
  (let-values (((An Ad Q) (curve12 N S)))
    (let stage1 ((p 2) (Q Q))
      (if (< p B1)
          (stage1 (next-prime p) (multiply (expt p (ilog p B1)) Q An Ad N))
          (let ((g (gcd (cdr Q) n))) (if (< 1 g n) (list 1 g)
            (let ((QQ (double Q An Ad N))
                  (R (multiply (- B1 1) q An Ad n))
                  (T (multiply (+ B1 1) q An Ad n)))
              (let stage2 ((p (next-prime B1)) (g g) (k (+ B1 1)) (R R) (T T))
                (cond ((< B2 p) (let ((g (gcd g n))) (if (< 1 g n) (list 2 g) #f)))
                      ((= k p) (stage2 (next-prime p) (modulo (* g (cdr T)) N)
                                       (+ k 2) t (add T QQ R N)))
                      (else (stage2 p g (+ k 2) t (add T QQ R N))))))))))))

(define verbose? #f)

(define (msg . xs)
  (when verbose?
    (for-each display xs)
    (newline)))

(define (factors n)

  ; parameters
  (define td-limit 100000)      ; limit of trial division
  (define rho-limit 100000)     ; iteration limit per rho trial
  (define rho-trials 5)         ; number of rho constants to try
  (define pminus1-limit 500000) ; iteration limit
  (define ecf-init 1000)        ; first stage limit on first curve
  (define ecf-step 1000)        ; increase first stage limit on each curve
  (define ecf-limit 100)        ; number of curves to try
  (define b2/b1 50)             ; calculate second stage limit

  (let ((n n) (facts '()))
    (call-with-current-continuation (lambda (exit)

      (define (factor? method f)
        (if (not f) #f
          (let ((f (if (eq? method 'ecf) (cadr f) f))
                (stage (if (eq? method 'ecf) (car f) #f)))
            (if (prime? f)
                (begin (set! n (/ n f)) (set! facts (cons f facts))
                       (if (eq? method 'ecf)
                           (msg " In stage " stage ", found factor "
                                f ", remaining co-factor " n)
                           (msg " Found factor " f ", remaining co-factor " n))
                       (when (prime? n)
                         (msg "  Factorization complete")
                         (exit (sort < (cons n facts))))
                       #t)
                (begin (if (eq? method 'ecf)
                           (msg " In stage " stage ", found non-prime factor " f)
                           (msg " Found non-prime factor " f))
                       (let ((fs (factors f)))
                         (if (or (not fs) (pair? (car fs)))
                             (exit (cons (sort < facts) (* n f)))
                             (begin (set! n (/ n f))
                                    (set! facts (append fs facts))
                                    (when (prime? n)
                                      (msg "  Factorization complete")
                                      (exit (sort < (cons n facts))))
                                    #t))))))))

      ; check for primality
      (when (prime? n) (msg "Input number is prime") (exit (list n)))

      ; trial division
      (msg "Trial division: bound=" td-limit)
      (let-values (((fs cofact) (td-factors n td-limit)))
        (when (pair? fs) (msg " Found factors " fs)
          (when (< 1 cofact) (msg " Remaining co-factor " cofact)))
        (when (= cofact 1) (msg "  Factorization complete") (exit fs))
        (set! facts (append fs facts)) (set! n cofact))

      ; pollard rho
      (let loop ((k rho-trials) (c (randint n)))
        (when (positive? k)
          (msg "Pollard rho: bound=" rho-limit ", constant=" c)
          (if (factor? 'rho (rho-factor n c rho-limit))
              (loop k (randint n))
              (loop (- k 1) (randint n)))))

      ; pollard pminus1
      (let loop ()
        (msg "Pollard p-1: bound=" pminus1-limit)
        (when (factor? 'pm1 (pminus1-factor n pminus1-limit)) (loop)))

      ; elliptic curve
      (let loop ((c 0) (s (randint 6 n)) (b1 ecf-init))
        (when (< c ecf-limit)
          (msg "Elliptic curve " c ": b1=" b1 ", b2=" (* b1 b2/b1) ", s=" s)
          (if (factor? 'ecf (ec-factor n b1 (* b1 b2/b1) s))
              (loop 0 (randint 6 n) ecf-init)
              (loop (+ c 1) (randint 6 n) (+ b1 ecf-step)))))

      ; failure -- return factors, remaining co-factor
      (cons (sort < facts) n)))))


Create a new paste based on this one


Comments: