Scheme, pasted on Jun 14:
 ```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ``` ```; the digits of pi, again (define (isqrt n) (if (not (and (positive? n) (integer? n))) (error 'isqrt "must be positive integer") (let loop ((x n)) (let ((y (quotient (+ x (quotient n x)) 2))) (if (< y x) (loop y) x))))) (define ch-A 13591409) (define ch-B 545140134) (define ch-C 640320) (define ch-C^3 (expt 640320 3)) (define ch-D 12) (define (ch-split a b) (display a) (display " ") (display b) (newline) (if (= 1 (- b a)) (let ((g (* (- (* 6 b) 5) (- (* 2 b) 1) (- (* 6 b) 1)))) (list g (quotient (* ch-C^3 (expt b 3)) 24) (* (expt -1 b) g (+ (* b ch-B) ch-A)))) (let* ((mid (quotient (+ a b) 2)) (gpq1 (ch-split a mid)) (gpq2 (ch-split mid b)) (g1 (car gpq1)) (p1 (cadr gpq1)) (q1 (caddr gpq1)) (g2 (car gpq2)) (p2 (cadr gpq2)) (q2 (caddr gpq2))) (list (* g1 g2) (* p1 p2) (+ (* q1 p2) (* q2 g1)))))) (define (pi digits) (let* ((num-terms (inexact->exact (floor (+ 2 (/ digits 14.181647462))))) (sqrt-C (isqrt (* ch-C (expt 100 digits))))) (let* ((gpq (ch-split 0 num-terms)) (g (car gpq)) (p (cadr gpq)) (q (caddr gpq))) (quotient (* p ch-C sqrt-C) (* ch-D (+ q (* p ch-A))))))) (display (pi 1000)) ```

Output:
 ```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 ``` ```0 72 0 36 0 18 0 9 0 4 0 2 0 1 1 2 2 4 2 3 3 4 4 9 4 6 4 5 5 6 6 9 6 7 7 9 7 8 8 9 9 18 9 13 9 11 9 10 10 11 11 13 11 12 12 13 13 18 13 15 13 14 14 15 15 18 15 16 16 18 16 17 17 18 18 36 18 27 18 22 18 20 18 19 19 20 20 22 20 21 21 22 22 27 22 24 22 23 23 24 24 27 24 25 25 27 25 26 26 27 27 36 27 31 27 29 27 28 28 29 29 31 29 30 30 31 31 36 31 33 31 32 32 33 33 36 33 34 34 36 34 35 35 36 36 72 36 54 36 45 36 40 36 38 36 37 37 38 38 40 38 39 39 40 40 45 40 42 40 41 41 42 42 45 42 43 43 45 43 44 44 45 45 54 45 49 45 47 45 46 46 47 47 49 47 48 48 49 49 54 49 51 49 50 50 51 51 54 51 52 52 54 52 53 53 54 54 72 54 63 54 58 54 56 54 55 55 56 56 58 56 57 57 58 58 63 58 60 58 59 59 60 60 63 60 61 61 63 61 62 62 63 63 72 63 67 63 65 63 64 64 65 65 67 65 66 66 67 67 72 67 69 67 68 68 69 69 72 69 70 70 72 70 71 71 72 31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989```