codepad
[
create a new paste
]
login
|
about
Language:
C
C++
D
Haskell
Lua
OCaml
PHP
Perl
Plain Text
Python
Ruby
Scheme
Tcl
; home primes (define (digits n . args) (let ((b (if (null? args) 10 (car args)))) (let loop ((n n) (d '())) (if (zero? n) d (loop (quotient n b) (cons (modulo n b) d)))))) (define (undigits ds . args) (let ((b (if (null? args) 10 (car args)))) (let loop ((ds ds) (n 0)) (if (null? ds) n (loop (cdr ds) (+ (* n b) (car ds))))))) (define (prime? n) (letrec ( (expm (lambda (b e m) (let ((times (lambda (x y) (modulo (* x y) m)))) (cond ((zero? e) 1) ((even? e) (expm (times b b) (/ e 2) m)) (else (times b (expm (times b b) (/ (- e 1) 2) m))))))) (digits (lambda (n) (let loop ((n n) (ds '())) (if (zero? n) ds (loop (quotient n 2) (cons (modulo n 2) ds)))))) (isqrt (lambda (n) (let loop ((x n) (y (quotient (+ n 1) 2))) (if (<= 0 (- y x) 1) x (loop y (quotient (+ y (quotient n y)) 2)))))) (square? (lambda (n) (let ((n2 (isqrt n))) (= n (* n2 n2))))) (jacobi (lambda (a n) (let loop ((a a) (n n)) (cond ((= a 0) 0) ((= a 1) 1) ((= a 2) (case (modulo n 8) ((1 7) 1) ((3 5) -1))) ((even? a) (* (loop 2 n) (loop (/ a 2) n))) ((< n a) (loop (modulo a n) n)) ((and (= (modulo a 4) 3) (= (modulo n 4) 3)) (- (loop n a))) (else (loop n a)))))) (inverse (lambda (x m) (let loop ((a 1) (b 0) (g x) (u 0) (v 1) (w m)) (if (zero? w) (modulo a m) (let ((q (quotient g w))) (loop u v w (- a (* q u)) (- b (* q v)) (- g (* q w)))))))) (strong-pseudo-prime? (lambda (n a) (let loop ((r 0) (s (- n 1))) (if (even? s) (loop (+ r 1) (/ s 2)) (if (= (expm a s n) 1) #t (let loop ((r r) (s s)) (cond ((zero? r) #f) ((= (expm a s n) (- n 1)) #t) (else (loop (- r 1) (* s 2)))))))))) (chain (lambda (m f g u v) (let loop ((ms (digits m)) (u u) (v v)) (cond ((null? ms) (values u v)) ((zero? (car ms)) (loop (cdr ms) (f u) (g u v))) (else (loop (cdr ms) (g u v) (f v))))))) (lucas-pseudo-prime? (lambda (n) (let loop ((a 11) (b 7)) (let ((d (- (* a a) (* 4 b)))) (cond ((square? d) (loop (+ a 2) (+ b 1))) ((not (= (gcd n (* 2 a b d)) 1)) (loop (+ a 2) (+ b 2))) (else (let* ((x1 (modulo (- (* a a (inverse b n)) 2) n)) (m (quotient (- n (jacobi d n)) 2)) (f (lambda (u) (modulo (- (* u u) 2) n))) (g (lambda (u v) (modulo (- (* u v) x1) n)))) (let-values (((xm xm1) (chain m f g 2 x1))) (zero? (modulo (- (* x1 xm) (* 2 xm1)) n))))))))))) (if (not (integer? n)) (error 'prime? "must be integer") (if (< n 2) #f (if (even? n) (= n 2) (if (zero? (modulo n 3)) (= n 3) (and (strong-pseudo-prime? n 2) (strong-pseudo-prime? n 3) (lucas-pseudo-prime? n)))))))) (define (factors n) (letrec ( (last-pair (lambda (xs) (if (pair? (cdr xs)) (last-pair (cdr xs)) xs))) (cycle (lambda xs (set-cdr! (last-pair xs) xs) xs)) (cons* (lambda (x . xs) (if (null? xs) x (cons x (apply cons* (car xs) (cdr xs))))))) (if (not (integer? n)) (error 'factors "must be integer") (if (member n '(-1 0 1)) (cdr (assoc n '((-1 -1) (0 0) (1 1)))) (if (negative? n) (cons -1 (factors (- n))) (let wheel ((n n) (p 2) (ps '()) (ws (cons* 1 2 2 (cycle 4 2 4 2 4 6 2 6)))) (if (= n 1) (reverse ps) (if (< n (* p p)) (reverse (cons n ps)) (if (zero? (modulo n p)) (wheel (/ n p) p (cons p ps) ws) (if (< p 1000) (wheel n (+ p (car ws)) ps (cdr ws)) (let rho ((ps ps) (cs (list n)) (a 1) (m 10000000)) (letrec ( (f (lambda (y) (modulo (+ (* y y) a) (car cs)))) (g (lambda (p x y) (modulo (* p (abs (- x y))) (car cs))))) (if (null? cs) (sort < ps) (let ((n (car cs))) (if (= n 1) (rho ps (cdr cs) a m) (if (prime? n) (rho (cons n ps) (cdr cs) a m) (let loop ((x 2) (y (f 2)) (j 1) (q 2) (p 1)) (if (= j m) (cons (sort < ps) cs) (if (= j q) (let ((t (f y))) (loop y t (+ j 1) (* q 2) (g p y t))) (if (positive? (modulo j 100)) (loop x (f y) (+ j 1) q (g p x y)) (let ((d (gcd p n))) (if (= d 1) (loop x (f y) (+ j 1) q 1) (if (= d n) (rho ps cs (+ a 1) (- m j)) (rho ps (cons* d (/ n d) (cdr cs)) a (- m j))))))))))))))))))))))))) (define (home-prime n) (let* ((fs (factors n)) (hp (undigits (apply append (map digits fs))))) (if (prime? hp) hp (home-prime hp)))) (define (home-factors n) (let loop ((n n) (hps '())) (if (prime? n) (reverse (cons n hps)) (let* ((fs (factors n)) (hp (undigits (apply append (map digits fs))))) (loop hp (cons fs hps)))))) (display (home-prime 99)) (newline) (display (home-factors 99)) (newline)
Private
[
?
]
Run code
Submit