; happy numbers
(define (sum xs) (apply + xs))
(define (square x) (* x x))
(define (digits n . args)
(let ((b (if (null? args) 10 (car args))))
(let loop ((n n) (d '()))
(if (zero? n) d
(loop (quotient n b)
(cons (modulo n b) d))))))
(define-syntax fold-of
(syntax-rules (range in is)
((_ "z" f b e) (set! b (f b e)))
((_ "z" f b e (v range fst pst stp) c ...)
(let* ((x fst) (p pst) (s stp)
(le? (if (positive? s) <= >=)))
(do ((v x (+ v s))) ((le? p v) b)
(fold-of "z" f b e c ...))))
((_ "z" f b e (v range fst pst) c ...)
(let* ((x fst) (p pst) (s (if (< x p) 1 -1)))
(fold-of "z" f b e (v range x p s) c ...)))
((_ "z" f b e (v range pst) c ...)
(fold-of "z" f b e (v range 0 pst) c ...))
((_ "z" f b e (x in xs) c ...)
(do ((t xs (cdr t))) ((null? t) b)
(let ((x (car t)))
(fold-of "z" f b e c ...))))
((_ "z" f b e (x is y) c ...)
(let ((x y)) (fold-of "z" f b e c ...)))
((_ "z" f b e p? c ...)
(if p? (fold-of "z" f b e c ...)))
((_ f i e c ...)
(let ((b i)) (fold-of "z" f b e c ...)))))
(define-syntax list-of (syntax-rules ()
((_ arg ...) (reverse (fold-of
(lambda (d a) (cons a d)) '() arg ...)))))
(define (happy? n)
(let loop ((n n) (ns '()))
(cond ((= n 1) #t)
((member n ns) #f)
(else (loop (sum (map square (digits n)))
(cons n ns))))))
(define (happy n) (list-of x (x range n) (happy? x)))
(display (happy 50))